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Synthesis of tetrasubstituted pyrazines and pyrazine N-oxides
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An efficient synthesis of tetrasubstituted unsymmetrical pyrazines and their related pyrazine N-oxides
has been developed from commercially available 2-chloro-3-methylpyrazine. The procedure and scope
of these synthesis routes are described.
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Figure 1. Tetrasubstituted pyrazines and pyrazine N-oxides, and pyrimidinones.
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Pyrazines are important pharmacophores present in an array of
biologically active compounds such as the antimycobacterial agent
pyrazinecarboxamide, the antibacterial agents Sulfaclozine and
Sulfalene, the antidiabetic agent Glipizide, and the hypnotic/seda-
tive agent Zopiclone.1 The most commonly utilized method for the
synthesis of pyrazines is the condensation of a-diketones with 1,2-
diamines or a-aminoketones followed by oxidation.1,2 This syn-
thetic methodology has broad applicability for the preparation of
symmetrical pyrazines (R1 = R3 and R2 = R4, Fig. 1). However, this
method has not found widespread applicability for the preparation
of unsymmetrical pyrazines due to issues associated with regiose-
lectivity. Recently several methods have been reported for the syn-
thesis of unsymmetrical pyrazines3 from various starting materials
such as epoxides,3b azirines,3c and chloropyrazines.3d To the best of
our knowledge, no efficient synthetic methods have been disclosed
for the synthesis of unsymmetrical pyrazines with four different
substituents (R1 – R2 – R3 – R4, alkyl, or aryl, Fig. 1). During the
course of our investigations to identify small molecule antagonists
of the calcium receptor, we became interested in preparing and
evaluating the biological effects of a series of unsymmetrical pyra-
zines and pyrazine N-oxides such as I and II as isosteric analogs of a
previously identified class of pyrimidinone antagonists generically
represented in structure III.4 Herein we report our work on the reg-
ioselective preparation of tetrasubstituted, unsymmetrical pyra-
zines I as well as pyrazine N-oxides II (R1 = R3 = aryls and
R2 = R4 = alkyls) as mimetics of the pyrimidonone scaffold III (
Fig. 1).

As outlined in Scheme 1, commercially available 2-chloro-3-
methylpyrazine 15a was used as the starting material for our syn-
thesis to prepare the key intermediates disubstituted pyrazine 1-
oxides 4a and 4b. Palladium-catalyzed cross-coupling of 2-
chloro-3-methylpyrazine 1 with arylboronic acids such as (5-
methyl-2-thienyl)boronic acid and phenylboronic acid in the pres-
ence of Pd(P-t-Bu3)4 (5 mol %) provided the disubstituted pyrazines
ll rights reserved.

: +1 610 917 6020.
2a and 2b in moderate yield (53% and 54%, respectively). Oxidation
of 2a and 2b using m-CPBA in CH2Cl2 at room temperature pro-
vided the disubstituted pyrazine 1-oxides 4a and 4b (73% and
78% yield, respectively). Interestingly, the formation of either the
regioisomeric N-oxide or the N,N0-dioxide (not shown) was not ob-
served in these transformations. The regioselectivity of oxidation
to 4a and 4b was also confirmed by the oxidation5b of 1 to 3
(95% yield) directly followed by a subsequent palladium-catalyzed
4a: R = 5-methyl-2-thienyl 
4b: R = Ph 

Scheme 1. Reagents and conditions: (a) RB(OH)2, Pd(P-t-Bu3)4, Na2CO3, toluene–
EtOH–H2O (100:1:1), reflux, 5 h; (b) m-CPBA, CH2Cl2, rt.
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Scheme 4. Reagents, conditions, and yields: (a) 1-bromo-2-[(phenyl-
methyl)oxy]benzene, Pd(OAc)2, K2CO3, P-t-Bu2Me–HBF4, toluene, 110 �C, 16 h,
63%; (b) (i) Pd/C, HCO2NH4, MeOH, 50 �C, 16 h, 82%; (ii) PMBCl, n-Bu4NI, K2CO3,
DMF, rt, 16 h, 81%; (c) m-CPBA, CH2Cl2, rt, 2 h, 77%; (d) 2-bromo-5-methylthioph-
ene, Pd(OAc)2, K2CO3, P-t-Bu2Me–HBF4, toluene, 110 �C, 16 h, 70%; (e)
PhCH2CH2MgBr, �30 �C, THF, 2 h, then O2, 1 h.
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Scheme 2. Reagents and conditions: (a) 1-bromo-2-(methyloxy)benzene, Pd(OAc)2,
K2CO3, P-t-Bu2Me–HBF4, toluene, 110 �C, 16 h; (b) POCl3, 110 �C, 30 min; (c)
PhCH2CH2ZnBr, PEPPSI-IPr, THF/DMI, LiBr, microwave, 100 �C, 10 min.
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cross-coupling reaction to provide analogs 4a (an unoptimized
yield of 49%) and 4b.

The regioselective introduction of the N-oxide of 4a and 4b was
instrumental for the subsequent incorporation of the C6 aryl as
well as the C5 phenethyl substituents (Scheme 2). Utilizing the
procedure originally described by Fagnou and co-workers for the
direct arylation of pyridine N-oxides,6 the N-oxide moiety of the
pyrazine 1-oxide 4a facilitated regioselective arylation with 1-bro-
mo-2-(methyloxy)benzene to provide the trisubstituted pyrazine
1-oxide 5a in 64% yield7,8 followed by a conversion to 5-chloropyr-
azine 6a using POCl3 at 110 �C in 88% yield. Cross-coupling of 5-
chloropyrazine 6a with phenethylzinc bromide in the presence of
PEPPSI-IPr9 under microwave conditions with heating provided
the tetrasubstituted pyrazine 7a in 68% yield.10

This cross-coupling reaction could be utilized with a variety of
substrates to introduce various alkyl groups (sp2–sp3 cross-cou-
pling reactions) as well as aryl groups (sp2–sp2 cross-coupling
reactions). The 2-phenylpyrazine 7b was obtained from 4b using
the reaction conditions described above in similar yields (33% for
3 steps). In addition, Pd-catalyzed cross-coupling conditions such
as those detailed by Suzuki, Stille, and Negishi could also be incor-
porated into this synthesis sequence.

To obtain the desired tetrasubstituted pyrazine 4-oxide 9, a di-
rect oxidation of the tetrasubstituted pyrazine analog 7a was at-
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tempted as outlined in Scheme 3. Unfortunately, oxidation of 7a
with 1.7 equiv of m-CPBA in CH2Cl2 at room temperature gave
the undesired tetrasubstituted pyrazine 1-oxide 8 as a major prod-
uct (48%, isolated yield).11 Other oxidation conditions such as urea/
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12 using m-CPBA provided 1,5-disubstituted pyrazine 4-oxide 13
(77%) as the major N-oxide along with the trace amount of the
undesired regioisomeric N0-oxide (not shown, <5%). Palladium-cat-
alyzed cross-coupling of 13 with 5-methylthienyl bromide pro-
vided the desired trisubstituted pyrazine 4-oxide 14 in 70% yield.
The regioselectivity of this transformation is likely a result of the
greater steric bulk of the C6 aryl moiety over that of the smaller
C2 methyl group. Installation of the C5 phenethyl moiety from
14 was accomplished utilizing a direct alkylation method13 with
an excess (3 equiv) phenethyl magnesium bromide in THF at
�30 �C followed by stirring with air-bubbling to provide the de-
sired tetrasubstituted pyrazine 4-oxide 15 in 62% yield.14 The tet-
rasubstituted pyrazine 16 was also obtained as a side product
(6%) resulting from the elimination of magnesium hydroxide from
the reaction intermediate, which was originally described in the
reaction of quinoline N-oxides by Goto and co-workers.13 The tri-
substituted pyrazine 4-oxide 14 is also a versatile intermediate
which may be utilized in sp2–sp2 cross-coupling reactions to fur-
ther explore the preparation of additional tetrasubstituted pyra-
zine analogs within this template.9,15

In this Letter we have detailed the development of efficient syn-
thesis routes to tetrasubstituted unsymmetrical pyrazines and pyr-
azine N-oxides which are important pharmacophores present in a
variety of biologically active compounds. The methods described
here could also have broader application in the synthesis of other
disubstituted and trisubstituted pyrazines as outlined in Schemes
2 and 4.
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